Datasheet for ABIN5414944 Human DEFB104A ORF Clone in Mammalian Expression Vector (Myc-DYKDDDDK Tag)

-online.com

Overview

nomics

Quantity:	10 µg
Gene:	DEFB104A
Species:	Human
Fusion tag:	Myc-DYKDDDDK Tag
Insert:	ORF
Vector:	Mammalian Expression Vector
Application:	Protein Expression (PExp)
Product Details	
Purpose:	Mammalian Vector with ORF clone of Human defensin, beta 104A (DEFB104A)
Brand:	TrueORF
Insert Length:	219 bp
Vector Backbone:	pCMV6-Entry
Promoter:	CMV Promoter
Bacterial Resistance:	Kanamycin
Expression Type:	Transient
Specificity:	Restriction Site: Sgfl-Mlul
Sequencing Primer:	VP1.5 (forward) 5'GGACTTTCCAAAATGTCG 3', XL39 (reverse) 5'ATTAGGACAAGGCTGGTGGG
	3'
Grade:	End-sequenced
Components:	The ORF clone is ion-exchange column purified, transfection-ready dried plasmid DNA, and shipped with 2 vector sequencing primers.

Target Details

DEFB104A DEFB104A Products Defensins form a family of antimicrobial and cytotoxic peptides made by neutrophils. Defensins are short, processed peptide molecules that are classified by structure into three groups: alpha-defensins, beta-defensins and theta-defensins. All beta-defensin genes are densely clustered in four to five syntenic chromosomal regions. Chromosome 8p23 contains at least two copies of the duplicated beta-defensin cluster. This duplication results in two identical copies of defensin, beta 104, DEFB104A and DEFB104B, in head-to-head orientation. This gene, DEFB104A, represents the more centromeric copy. NM_080389, NP_525128 For Research Use only
Defensins form a family of antimicrobial and cytotoxic peptides made by neutrophils. Defensins are short, processed peptide molecules that are classified by structure into three groups: alpha- defensins, beta-defensins and theta-defensins. All beta-defensin genes are densely clustered in four to five syntenic chromosomal regions. Chromosome 8p23 contains at least two copies of the duplicated beta-defensin cluster. This duplication results in two identical copies of defensin, beta 104, DEFB104A and DEFB104B, in head-to-head orientation. This gene, DEFB104A, represents the more centromeric copy. NM_080389, NP_525128
are short, processed peptide molecules that are classified by structure into three groups: alpha- defensins, beta-defensins and theta-defensins. All beta-defensin genes are densely clustered in four to five syntenic chromosomal regions. Chromosome 8p23 contains at least two copies of the duplicated beta-defensin cluster. This duplication results in two identical copies of defensin, beta 104, DEFB104A and DEFB104B, in head-to-head orientation. This gene, DEFB104A, represents the more centromeric copy. NM_080389, NP_525128
defensins, beta-defensins and theta-defensins. All beta-defensin genes are densely clustered in four to five syntenic chromosomal regions. Chromosome 8p23 contains at least two copies of the duplicated beta-defensin cluster. This duplication results in two identical copies of defensin, beta 104, DEFB104A and DEFB104B, in head-to-head orientation. This gene, DEFB104A, represents the more centromeric copy. NM_080389, NP_525128
four to five syntenic chromosomal regions. Chromosome 8p23 contains at least two copies of the duplicated beta-defensin cluster. This duplication results in two identical copies of defensin, beta 104, DEFB104A and DEFB104B, in head-to-head orientation. This gene, DEFB104A, represents the more centromeric copy. NM_080389, NP_525128
the duplicated beta-defensin cluster. This duplication results in two identical copies of defensin, beta 104, DEFB104A and DEFB104B, in head-to-head orientation. This gene, DEFB104A, represents the more centromeric copy. NM_080389, NP_525128
beta 104, DEFB104A and DEFB104B, in head-to-head orientation. This gene, DEFB104A, represents the more centromeric copy. NM_080389, NP_525128
represents the more centromeric copy. NM_080389, NP_525128
NM_080389, NP_525128
For Research Use only
For Research Use only
Lyophilized
4 °C/-20 °C
Johnson, Drugan, Miller, Evans: "38" in: , Vol. 1363, Issue Nucleic acids research, pp. 28-39, (