-online.com genomics

Datasheet for ABIN4844878 Mouse FADS2B cDNA Clone in Bacterial Expression Vector (His-GST)

Overview

Quantity:	500 ng
Gene:	FADS2B
Species:	Mouse
Fusion tag:	His-GST
Insert:	cDNA
Vector:	Bacterial Expression Vector
Application:	Cloning (Clon)

Product Details

which is cleavable with TEV (Size 27.9 kDa)		
Vector Backbone:pPB-His-GSTPromoter:T7 PromoterBacterial Resistance:KanamycinExpression Type:TransientSpecificity:5-Nhel and 3-Xhol Fusion tag: Dual N-terminal tag, 6X Histidine followed by Glutathione-S-Tr which is cleavable with TEV (Size 27.9 kDa)	Purpose:	Bacterial expression of Mouse 4833423E24Rik with His-GST
Promoter:T7 PromoterBacterial Resistance:KanamycinExpression Type:TransientSpecificity:5-Nhel and 3-Xhol Fusion tag: Dual N-terminal tag, 6X Histidine followed by Glutathione-S-Tr which is cleavable with TEV (Size 27.9 kDa)	Insert Length:	1685 bp
Bacterial Resistance: Kanamycin Expression Type: Transient Specificity: 5-Nhel and 3-Xhol Fusion tag: Dual N-terminal tag, 6X Histidine followed by Glutathione-S-Tr which is cleavable with TEV (Size 27.9 kDa)	Vector Backbone:	pPB-His-GST
Expression Type: Transient Specificity: 5-Nhel and 3-Xhol Fusion tag: Dual N-terminal tag, 6X Histidine followed by Glutathione-S-Tr which is cleavable with TEV (Size 27.9 kDa)	Promoter:	T7 Promoter
Specificity: 5-Nhel and 3-Xhol Fusion tag: Dual N-terminal tag, 6X Histidine followed by Glutathione-S-Tr which is cleavable with TEV (Size 27.9 kDa)	Bacterial Resistance:	Kanamycin
Fusion tag: Dual N-terminal tag, 6X Histidine followed by Glutathione-S-Tr which is cleavable with TEV (Size 27.9 kDa)	Expression Type:	Transient
Sequencing Primer: GST Forward primer: 5'-CACGTTTGGTGGTGGCGAC3' T7 terminator prim	Specificity:	Fusion tag: Dual N-terminal tag, 6X Histidine followed by Glutathione-S-Transferase Protein
GCTAGTTATTGCTCAGCGG-3'	Sequencing Primer:	GST Forward primer: 5'-CACGTTTGGTGGTGGCGAC3', T7 terminator primer: 5'-GCTAGTTATTGCTCAGCGG-3'

Target Details

Gene:

FADS2B

Target Details	
Alternative Name:	4833423E24Rik (FADS2B Products)
NCBI Accession:	NM_001081664
Application Details	
Application Notes:	The pPB vectors are low-medium copy number vectors in which the gene expression is driver
	by the strong T7 promoter.
	Below are some basic guidelines for using the pPB vectors for protein production:
	1. The pPB vectors are designed to be used with E. coli strains that are DE3 lysogens i.e. the
	host E. coli cell has a source of T7 RNA polymerase.
	2. Recombinant protein induction is usually done at OD600 of 0.6-1.2 using Isopropyl β -D-1-
	thiogalactopyranoside (IPTG) at a final concentration of 0.05 -1mM.
	3. The ideal concentration of IPTG must be determined empirically for each recombinant
	protein/cell-line. Similarly, the length of time and temperature for induction provide other
	variables that need to be optimized on a case-to-case basis.
	4. For toxic proteins, it is recommended to go for shorter induction time and also to try and
	suppress basal recombinant gene expression through (a) addition of glucose or use of pLysS
	plasmid. Please note that special cell-lines are also available in the market that cater to
	expression of toxic proteins.
	5. Once grown for the desired length of time, harvest cells by centrifugation and either freeze
	the cells at -80°C (as such or after re-suspending in the desired buffer) or proceed with the
	purification.
Restrictions:	For Research Use only
Handling	
Format:	Liquid

Storage:	-20 °C
Storage Comment:	1 year when stored at -20° C or lower in a non-frost free freezer.
Expiry Date:	12 months

10 mM Tris-HCl, 1 mM EDTA, pH 8.0

Publications

Buffer:

Product cited in:

Johnson, Drugan, Miller, Evans: "38" in: , Vol. 1363, Issue Nucleic acids research, pp. 28-39, (

```
Publications
```

1991)