-online.com genomics

Datasheet for ABIN4837380 Human PFDN6 cDNA Clone in Bacterial Expression Vector (His-GST)

Overview

Quantity:	500 ng			
Gene:	PFDN6			
Species:	Human			
Fusion tag:	His-GST			
Insert:	cDNA			
Vector:	Bacterial Expression Vector			
Application:	Cloning (Clon)			

Product Details

Purpose:	Bacterial expression of Human PFDN6 with His-GST			
Insert Length:	390 bp			
Vector Backbone:	pPB-His-GST			
Promoter:	T7 Promoter			
Bacterial Resistance:	Kanamycin			
Expression Type:	Transient			
Specificity:	5-Nhel and 3-Xhol Fusion tag: Dual N-terminal tag, 6X Histidine followed by Glutathione-S-Transferase Protein which is cleavable with TEV (Size 27.9 kDa)			
Sequencing Primer:	GST Forward primer: 5'-CACGTTTGGTGGTGGCGAC3', T7 terminator primer: 5'-GCTAGTTATTGCTCAGCGG-3'			

Target Details

G	۵	n	Ъ	
G	e	11	e	

Target Details				
Alternative Name:	PFDN6 (PFDN6 Products)			
NCBI Accession:	NM_014260			
Application Details				
Application Notes:	The pPB vectors are low-medium copy number vectors in which the gene expression is driver			
	by the strong T7 promoter.			
	Below are some basic guidelines for using the pPB vectors for protein production:			
	1. The pPB vectors are designed to be used with E. coli strains that are DE3 lysogens i.e. the			
	host E. coli cell has a source of T7 RNA polymerase.			
	2. Recombinant protein induction is usually done at OD600 of 0.6-1.2 using Isopropyl β -D-1-			
	thiogalactopyranoside (IPTG) at a final concentration of 0.05 -1mM.			
	3. The ideal concentration of IPTG must be determined empirically for each recombinant			
	protein/cell-line. Similarly, the length of time and temperature for induction provide other			
	variables that need to be optimized on a case-to-case basis.			
	4. For toxic proteins, it is recommended to go for shorter induction time and also to try and			
	suppress basal recombinant gene expression through (a) addition of glucose or use of pLysS			
	plasmid. Please note that special cell-lines are also available in the market that cater to			
	expression of toxic proteins.			
	5. Once grown for the desired length of time, harvest cells by centrifugation and either freeze			
	the cells at -80°C (as such or after re-suspending in the desired buffer) or proceed with the			
	purification.			
Restrictions:	For Research Use only			
Handling				
Format:	Liquid			
Buffer:	10 mM Tris-HCl, 1 mM EDTA, pH 8.0			

-20 °C

12 months

Product cited in:

Publications

Storage Comment:

Storage:

Expiry Date:

Johnson, Drugan, Miller, Evans: "38" in: , Vol. 1363, Issue Nucleic acids research, pp. 28-39, (

1 year when stored at -20° C or lower in a non-frost free freezer.

```
Publications
```

1991)