-online.com genomics

Datasheet for ABIN3188225 Cas9 Nickase H840A Protein

Overview	
Quantity:	8 µg
Application:	Genome Editing with Engineered Nucleases (GEEN)
Product Details	
Characteristics:	The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system is the
	latest RNA-guided, endonuclease tool in genome editing which allows for very specific genomic
	disruption and replacement. One concern with the current CRISPR Cas9 technology is the
	potential off-target effects of the Cas9 nuclease activity. To improve the off-target mutagenic
	effects of this system, the Cas9 Nickase H840A Protein was developed with a H840A mutation
	in its HNH-like nuclease domain. This mutant form results in the generation of single strand
	nick instead of a double stranded break (DSB), like that generated by the Cas9 Nuclease, at the
	target site. Since a single strand break, or nick, is normally quickly repaired through the
	homology directed repair pathway using the intact complementary DNA strand as the repair
	template, off-target effects of the Cas9 Nickase is minimized. To utilize Cas9 Nickase for
	genome editing, two gRNAs, instead of one is required. The two gRNAs will be designed on
	opposite DNA strands but with close proximity to ensure that a DSB is induced once the two
	strands are nicked by the Cas9 Nickase. This paired Cas9 Nickase modification reduces off-
	target effects because the two gRNAs need to work together to produce a DSB. Once the DSB
	is created, either the NHEJ or HDR pathway will be activated to complete the genome editing
	process. The Cas9 Nickase can also be used to create nucleotide modifications by homologous
	recombination if a repair template DNA containing the desired modification is introduced along
	with the gRNA and Cas9 nickase.
Components:	Enzyme supplied with 10X Reaction Buffer

Application Details

Restrictions:

For Research Use only

Handling		
Concentration:	1000 nM	
Buffer:	10 mM Tris-HCl (pH 7.4), 0.1 mM EDTA, 1 mM DTT, 300 mM NaCl, and 50 % (v/v) Glycerol.	
Storage:	-20 °C	
Publications		
Product cited in:	Johnson, Drugan, Miller, Evans: "38" in: , Vol. 1363, Issue Nucleic acids research, pp. 28-39, (1991)	